

Electro Optical Components, Inc.

5464 Skylane Boulevard, Suite D, Santa Rosa, CA 95403

Toll Free: 855-EOC-6300

www.eoc-inc.com info@eoc-inc.com

3.0 - 3.7 μm

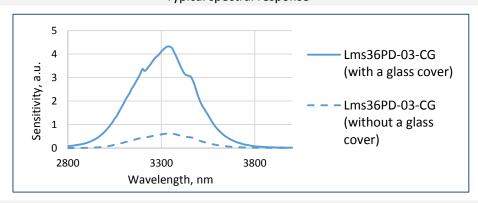
Mid-Infrared (MIR) Photodiode

Series with a glass cover

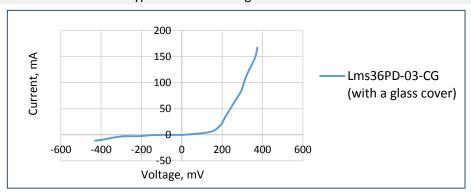
Lms36PD-03-CG series

Device parameters	Symbol	Value	Units
Sensitive area diameter	d	0,3	mm
Storage temperature	T_{stg}	0+50	°C
Operating temperature	T _{opr}	0+50	°C
Lead soldering temperature (time < 3 seconds, 3 mm from case)	T _{sol}	+180	°C
Reverse voltage	V_r	0.1	V

Photodiode parameters	Conditions	Symbol	Value	Units
Cut-off wavelength	T = 25 °C	λ_{cut}	3.55 - 3.7	μm
Max. sensitivity range (>80%)	T = 25 °C	λ_{p}	3.2 - 3.4	μm
Dark current	T = 25 °C; $V_{reverse} = 0.1 V$	l _d	200 - 600	μΑ
Shunt resistance	T = 25 °C; $V_{reverse}$ = 10 mV	R _{sh}	0,2 - 0,8	kΩ
Capacitance	T = 25 °C; $\lambda = \lambda_p$	С	150 - 350	pF


All specifications are for photodiode operation at 25°C unless otherwise stated

Photodiodes Lms36PD-03-CG series are fabricated from narrow band-gap InAsSbP/InAs-based heterostructures lattice matched to InAs substrate.


Photodiode with a glass cover provides a signal that is minimum 3 times higher than the signal from the same photodiode without a glass cover due to:

- increase of the photodiode effective sensitive area with a glass cover
- increase of the emission got inside the PD crystal

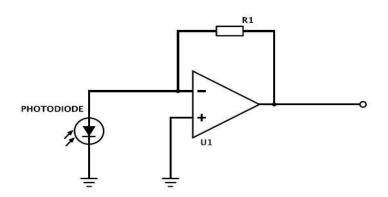
Typical spectral response

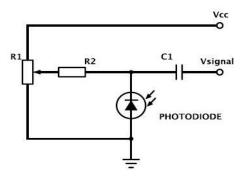
Typical current-voltage characteristic

Mid-Infrared (MIR) Photodiode

3.0 - 3.7 μm

Series with a glass cover


Lms36PD-03-CG series


Packages	Model
TO-18 with a glass covering	Lms MIR PD-03-CG
PD with a built-in preamplifier; TO-18 with a glass covering and a parabolic reflector without a window in an aluminium tube	Lms MIR PD-03-CG-R-PA

Recommended modes of PD operation

PD used as a current source (photovoltaic mode)

PD used in a photoconductive mode (under reverse bias)

We recommend using **photovoltaic mode**, when PD is used under no reverse bias.

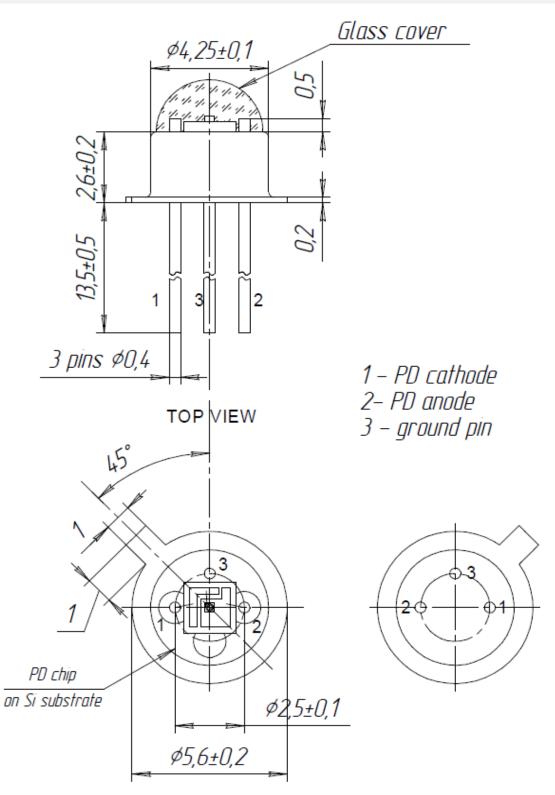
Use photoconductive mode (mode with reverse bias) with caution.

IMPORTANT CAUTIONS:

- check your connection circuit before turning on the PD;
- mind the PD polarity: PD anode is marked with a RED dot;
- do not connect the PD to the multimeter;
- do not touch the glass covering and do not apply any force to it;
- observe the allowable operating temperature range, exceeding this eange may cause irreparable damage of the glass cover

Related products:

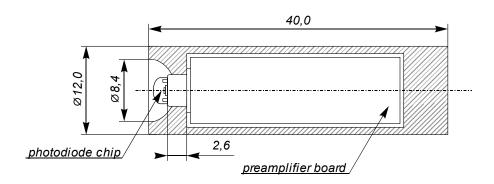
- LEDs sources of mid-infrared radiation;
- **SDM** synchronous detector for PD models with preamplifiers Lms MIR PD-XX-CG-R-PA. SDM synchronous detector measures the voltage signal from the output of photodiode preamplifier and converts it to the DC voltage signal proportional to amplitude of voltage from input.



Lms36PD-03-CG series

Technical Drawing

Lms MIR PD-03-CG



Series with a glass cover

Lms36PD-03-CG series

Technical Drawing

Lms MIR PD-03-CG-R-PA

Connections:

The output of PD with a built-in preamplifier has four wires:

- "+" power input (to the "+" of the power output terminal block of the SDM synchronous detector);
- "-" power input (to the "-" of the power output terminal block of the SDM synchronous detector);
- output photodiode signal (to the "-" of the signal input terminal block of the SDM synchronous detector);
- output photodiode signal (to the "+" of the signal input terminal block of the SDM synchronous detector).

For the proper connection mind colours of the wires pointed in the technical data provided with the photodiode.