Product Data Sheet

Electrochemical NO₂ Sensor (3 Series) (P/N: 057-3000-000)

- **Description**
 The sensor is designed for the measurement of NO₂ concentration in gas phase. It can be used as the pin to pin replacement of the standard 3 series electrochemical NO₂ sensor.

- **Performance Characteristics**
 - Nominal Range: 0–500 ppm
 - Maximum Overload: 1000 ppm
 - Sensitivity (20 °C): 0.37 ± 0.07 μA/ppm (negative signal)
 - Response Time (T90): ≤ 35 s
 - Zero Signal (20 °C): ±0.2 ppm
 - Baseline Shift (-20 °C ~ 50 °C): < -1 ppm
 - Resolution: 0.5 ppm
 - Linearity: Linear up to 500 ppm
 - Bias Voltage: 0 mV

- **Environmental**
 - Temperature Range: -20 °C ~ 50 °C
 - Pressure Range: 1 atm ± 10%
 - Humidity Range: 15% ~ 90%RH non-condensing

- **Life Time**
 - Long Time Output Drift: < 2 % signal/month
 - Recommended Storage Temp: 10 °C ~ 30 °C
 - Expected Operating Life: 3 years in clean air
 - Storage Life: 6 months in original packaging
 - Warranty: 12 months

- **Intrinsic Safety Data**
 - Maximum Current at 1000 ppm NO₂: < 0.5 mA
 - Maximum O/C Voltage: 1.3 V
 - Maximum S/C Current: < 1.0 A

- **Physical Characteristics**
 - Housing Material: ABS
 - Weight (Nominal): 23 g
 - Orientation: None

- **Installation**
 Output signals from the sensor pins are different. Inappropriate use of the pins in product design will affect the sensor functionality. Exposure to high concentrations of solvent vapors should be avoided under any condition. Mechanical overstress may cause deformation or cracks of the plastic enclosure of the sensor. If the sensor is used in extreme environmental conditions, please contact us if you need more details.

Note
The performance data in this document is conducted by using SemeaTech recommended test circuitry and test environment at 20 °C, 50%RH and 1 atm. Sensor performance varies under different environmental conditions, please contact us if you need more details.
• Cross-Sensitivity Data

<table>
<thead>
<tr>
<th>Gas</th>
<th>Concentration (ppm)</th>
<th>Output signal (ppm NO₂ equivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur Dioxide</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Nitric Oxide</td>
<td>250</td>
<td>-3.2</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>Hydrogen Chloride</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>200</td>
<td>19.9</td>
</tr>
<tr>
<td>Ethylene</td>
<td>200</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Note: The cross sensitivity are including but not limited to the above gases. It may also respond to other gases. The data in the table above may vary from different batches of sensors and the changes of test environment. Calibration with cross sensitivity gas is not recommended.

• Temperature Data

![Sensitivity Vs Temperature](image)

• Safety Note

The sensor is designed to be used in certain instruments for life critical applications. To ensure the sensor functioning per its specifications inside the instrument, it is required to read the instrument user's guide carefully and comply with the calibration procedures by using certified target calibration gas before each use. Failure to do so may cause serious injury and fatality. Please do not open the housing because the electrolyte stored inside is harmful.

It is highly recommended for customers to validate the sensor performance using this document as a reference for their product designs or applications.