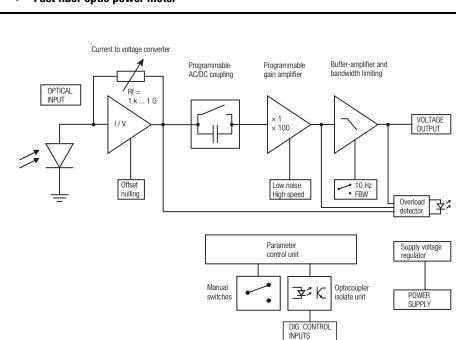


Electro Optical Components, Inc.

5460 Skylane Boulevard, Santa Rosa, CA 95403 Toll Free: 855-EOC-6300

Click to go to Product Selector

www.eoc-inc.com info@eoc-inc.com


Datasheet 0E-200-UV

Variable Gain Low Noise Current Amplifier

The picture shows model OE-200-UV-FST

Features	 Si-PIN detector, active area 1.1 x 1.1 mm² Spectral range 190 - 1000 nm Very low noise, NEP down to 17 fW/√Hz Bandwidth up to 500 kHz Conversion gain adjustable from 1 x 10³ up to 1 x 10¹¹ V/W Free-space input 1.035"-40 threaded, easily convertible to fiber optic input (FC and FSMA) with optionally available screw-on adapters Fiber optic input also available as permanently mounted FC-input Factory calibrated at 850 nm (fiber optic FC version only) Full manual and remote control capability
Applications	 All-purpose very low-noise photoreceiver (O/E converter) Time resolved optical pulse and power measurements Optical front-end for oscilloscopes, spectrum analyzers, A/D converters and lock-in amplifiers Fast fiber optic power meter
Block Diagram	

Variable Gain Low Noise Current Amplifier

Intended Use

The OE-200-UV is a ultra-low noise variable gain photoreceiver. It is designed for fast and precise conversion of small optical signals into equivalent output voltages. Operation is mostly self-explanatory. If in doubt, consult this document or contact support@femto.de.

For safe operation, please refer to the damage thresholds specified in the "Absolute Maximum Ratings", "Temperature Range" and "Power Supply" sections of this document.

The operating environment must be free of smoke, dust, grease, oil, condensing moisture, and other contaminants that could affect the operation or performance.

Available Versions

0E-200-UV-FST

1.035"-40 threaded flange with internally threaded coupler ring (outer diameter 30 mm) for free space applications. Compatible with many optical standard accessories and for use with various types of fiber connector adapters.

Optionally available:

Fiber adapters PRA-FC, PRA-FCA and PRA-FSMA. With the relative large 1.1 \times 1.1 mm dia. photodiode the OE-200-UV input coupling is not critical. However, standard SM 9/125 fibers (PC or APC) with low numerical aperture (NA) are recommended for ensuring near 100% coupling efficiency.

0E-200-UV-FC

Fix/permanent FC fiber connector for high coupling efficiency and excellent conversion gain accuracy.

Since illumination conditions with the permanently mounted fiber optic connector are well defined, the FC model is delivered with a factory calibrated conversion gain at 850 nm.

The electro optical conversion gain factor of the FST free space model is set to fit nominally at 850 nm.

Related OE-200 Models

See separate datasheets for following models on www.femto.de:

Si Versions

OE-200-SI-FST Si-PIN, Ø 1.2 mm, 320 - 1060 nm,

conversion gain adjusted at 850 nm,

free space input, 1.035"-40 threaded flange

0E-200-SI-FC

Si-PIN, Ø 1.2 mm, 320 - 1060 nm, conversion gain calibrated at 850 nm, FC fiber connector (fix/permanent)

F E T O

Variable Gain Low Noise Current Amplifier

Related OE-200 Models (continued)

InGaAs Versions

0E-200-IN1-FST

InGaAs-PIN, \varnothing 300 µm, 900 - 1700 nm, conversion gain adjusted at 1310 nm,

free space input, 1.035"-40 threaded flange

OE-200-IN1-FC InGaAs-PIN, integrated ball lens, 900 - 1700 nm,

conversion gain calibrated at 1310 nm, FC fiber connector (fix/permanent)

conversion gain adjusted at 1550 nm, free space input, 1.035"-40 threaded flange

OE-200-IN2-FC InGaAs-PIN, integrated ball lens, 900 - 1700 nm,

conversion gain calibrated at 1550 nm, FC fiber connector (fix/permanent)

Available Accessories

PRA-FCA PRA-FSMA

Fiber-adapter with external 1.035"-40 thread

PRA-PAP

Alternative mounting option: post adapter plate, easy to mount on FEMTO photoreceiver series OE, FWPR, PWPR, HCA-S and LCA-S

PS-15-25-L

Power Supply input: 100 – 240 VAC output: ±15 VDC

LUCI-10

Compact digital I/O interface for USB remote control, supports opto-isolation of amplifier signal path from PC USB port, 16 digital outputs, 3 opto-isolated digital inputs, bus-powered operation

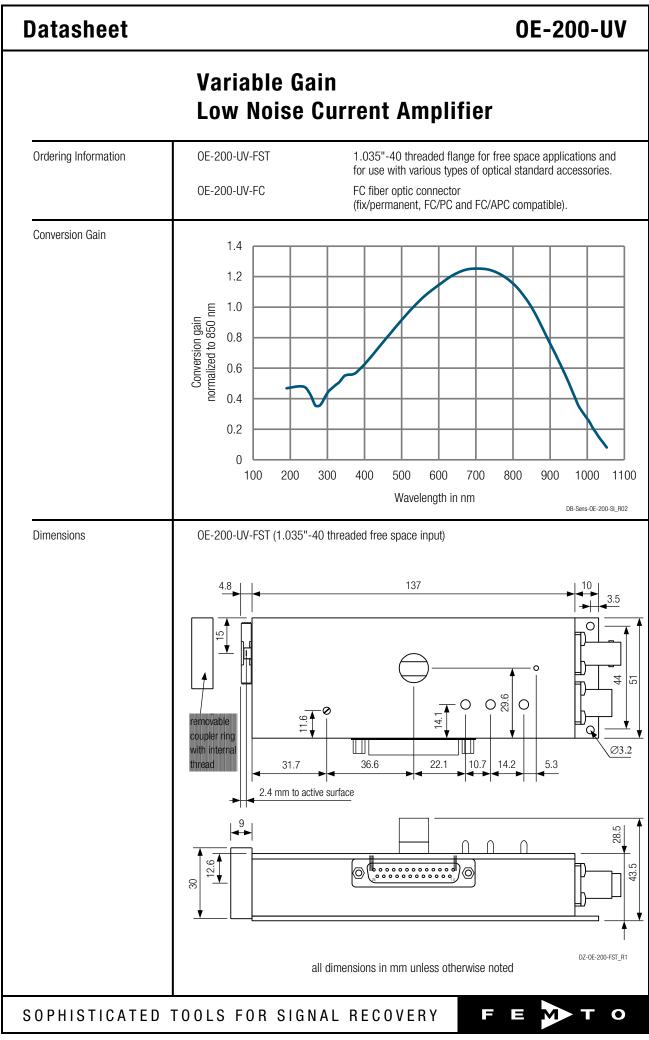
Variable Gain Low Noise Current Amplifier

pecifications	Test conditions	$V_{\text{S}}=\pm 15$ V, $T_{\text{A}}=25$ °C, output load impedance 1 M Ω , warm-up 20 minutes (min. 10 minutes recommended)
Gain	Conversion gain Gain accuracy	1 × 10 3 1 × 10 11 V/W (@ 850 nm, output load ≥ 100 kΩ) ±1 % electrical, between settings
	Conversion gain accuracy	OE-200-UV-FST (@ $P_{OPT} \le 2 \text{ mW}$, 850 nm) ±15 % nominal
		OE-200-UV-FC (@ $P_{OPT} \le 1$ mW, 850 nm) ± 5 % guaranteed by factory calibration*
		* factory verified with MM 50/125, FC/APC, NA 0.22 (when using FC/PC fiber connector, coupling efficiency may differ slightly), coupling efficiency depends on fiber type.
	Gain drift	see table below
Frequency Response	Lower cut-off frequency Upper cut-off frequency (–3 dB)	DC / 1 Hz, switchable up to 500 kHz (see table below), switchable to 10 Hz
Input	Input offset current (dark current) Input offset drift Input offset compensation range Optical CW saturation power Noise equivalent power (NEP)	2 pA typ. see table below ±600 pA, adjustable by offset potentiometer or ±400 pA, adjustable by external control voltage see table below see table below
Performance depending	Gain setting (low noise) (V/W)**	10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 10 ⁷ 10 ⁸ 10 ⁹
on Gain Setting	Upper cut-off frequency (-3 dB) Rise/fall time (10 % - 90 %) NEP (/\/Hz)** Measured at Integr. input noise (RMS)*** Input offset drift (/°C)** Gain drift (/°C) Optical CW saturation power**	500 kHz 500 kHz 400 kHz 200 kHz 50 kHz 7 kHz 1.1 kH 700 ns 700 ns 900 ns 1.8 μs 7 μs 50 μs 300 μ 60 pW 7.3 pW 1.5 pW 450 fW 150 fW 48 fW 17 fW 10 kHz 10 kHz 10 kHz 1 kHz 1 kHz 100 Hz 100 Hz 63 nW 9 nW 2.8 nW 1 nW 320 pW 46 pW 6.2 pW 100 nW 10 nW 1 nW 85 pW 8.5 pW 1.3 pW 1 pW 0.008% 0.008% 0.008% 0.01% 0.01% 0.01% 0.02% 2 mW 1 mW 0.1 mW 10 μW 1 μW 0.1 μW 10 nW
	Gain setting (high speed) (V/W)**	10^5 10^6 10^7 10^8 10^9 10^{10} 10^{11}
	Upper cut-off frequency (–3 dB) Rise/fall time (10 % - 90 %) NEP (/_/Hz)** Measured at Integr. input noise (RMS)*** Input offset drift (/°C)** Gain drift (/°C) Optical CW saturation power**	500 kHz 500 kHz 400 kHz 200 kHz 50 kHz 7 kHz 1.1 kl 700 ns 700 ns 900 ns 1.8 μs 7 μs 50 μs 300 μ 48 pW 6.6 pW 1.5 pW 450 fW 150 fW 48 fW 17 fW 10 kHz 10 kHz 1 kHz 1 kHz 100 Hz 100 Hz 41 nW 6.8 nW 2.5 nW 920 pW 300 pW 43 pW 6.1 pV 100 nW 10 nW 1 nW 85 pW 8.5 pW 1.3 pW 1 pW 0.008% 0.008% 0.01% 0.01% 0.01% 0.01% 0.01 mV 0.1 mW 10 μW 1 μW 0.1 μW 10 nW 1 nW 0.1 nV
	** referred to 850 nm	
		neasured with a shaded input in the full bandwidth ("FBW")
	The input referred peak-peak nois	te can be calculated from the RMS noise as follows: $P_{\text{Input noise peak-to-peak}} = P_{\text{Input noise RMS}} \times 6$
	The output noise is given by:	$\begin{array}{ll} U_{\text{ Output noise RMS}} &= P_{\text{ Input noise RMS}} \times gain \\ U_{\text{ Output noise peak-to-peak}} &= U_{\text{ Output noise RMS}} \times 6 = P_{\text{ Input noise RMS}} \times gain \times 6 \end{array}$
		ed considerably by setting the low pass filter to "10 Hz" instead of the continuous wave (CW) measurements.

F E T O

Variable Gain Low Noise Current Amplifier

Datasta:	Detector to	C: DIN photodiada
Detector	Detector type Active area Spectral range Sensitivity	Si-PIN photodiode 1.1 × 1.1 mm ² 190 - 1000 nm 0.29 A/W (@ 850 nm) 0.36 A/W (@ 700 nm)
Output	Output voltage Output impedance Max. output current	± 10 V (@ ≥100 k Ω output load) 50 Ω (terminate with ≥100 k Ω load) ± 30 mA (short-circuit proof)
Indicator LED	Function	overload
Digital Control	Control input voltage range Control input current Overload output	LOW bit: -0.8 V +1.2 V, HIGH bit: +2.3 V +12 V 0 mA @ 0 V, 1.5 mA @ +5 V, 4.5 mA @ +12 V non active: <0.4 V @ 01 mA active: typ. 5 5.1 V @ 0 2 mA
Ext. Offset Control	Control voltage range Offset control input impedance Conversion factor	±10 V 20 kΩ 40 pA/V
Optical Input Connector	Material FST flange Material FST coupler ring Material FC receptacle	1.4305 stainless steel, nickel-plated 1.4305 stainless steel, glass bead blasted nickel silver
Power Supply	Supply voltage Supply current	± 15 V (± 14.75 V ± 16.5 V) ± 110 / -80 mA typ. (depends on operating conditions, recommended power supply capability min. ± 200 mA)
Case	Weight Material	360 g (0.79 lbs) AIMg4.5Mn, nickel-plated
Temperature Range	Storage temperature Operating temperature	-40 °C +80 °C 0 °C +60 °C
Absolute Maximum Ratings	Optical input power (CW) Digital control input voltage Analog control input voltage Power supply voltage	20 mW -5 V/+16 V relative to digital ground DGND (pin 9) ±15 V relative to analog ground AGND (pin 3) ±20 V
Connectors	Input	OE-200-UV-FST 1.035"-40 threaded flange for free space applications
	Output Power supply	OE-200-UV-FC FC fiber optic connector BNC jack (female) LEMO® series 1S, 3-pin fixed socket (mating plug type: FFA.1S.303.CLAC52) PIN 2 PIN 1 PIN 1 PIN 1: +15 V Pin 2: -15 V Pin 3: GND

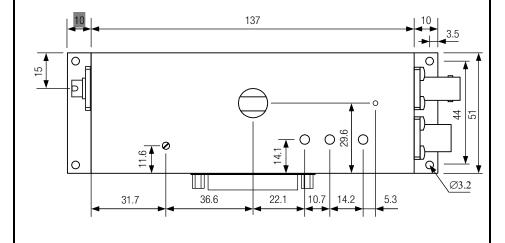

SOPHISTICATED TOOLS FOR SIGNAL RECOVERY F E M T O

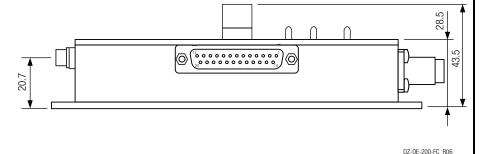
0E-200-UV Datasheet

Variable Gain **Low Noise Current Amplifier**

Connectors (continued)					
	Control port	Sub-D 25-pin, female, qual. class 2 (13			
		Pin 1: +12 V (stabilized power supply output*) Pin 2: -12 V (stabilized power supply output*) Pin 3: AGND (analog ground) Pin 4: +5 V (stabilized power supply output*) Pin 5: digital output: overload (referred to pin 3) Pin 6: signal output (connected to BNC) Pin 7: NC Pin 8: input offset control voltage Pin 9: DGND (ground for digital control pins 10 - Pin 10: digital control input: gain, LSB Pin 11: digital control input: gain Pin 12: digital control input: gain, MSB Pin 13: digital control input: AC/DC Pin 14: digital control input: high speed / low nois Pin 15 - 25: NC	- 14		
		*stabilized power supply output current ±12 V: max. ±50 mA, +5V: max. 30 mA			
Remote Control Operation	General	Remote control input bits are opto-isolated and connected by logical OR function to local switch settings. For remote control set the corresponding local switches to "Remote "AC" and "H" (High speed) and select the wanted setting via a bit code at the corresponding digital inputs. Mixed operation, e.g. local gain setting and remote controlled AC/DC setting, is also possible.	te ",		
		Switch setting "FBW / 10 Hz" of the low pass signal filter is not remote controllable.			
	Gain setting	Low noise High speed Pin 14=HIGH Pin 14=LOW Pin 12 Pin 11 Pin 1 Gain (V/W) Gain (V/W) MSB LSB 10³ 10⁵ LOW LOW LOW 10⁴ 10⁶ LOW LOW HIGH 10⁵ 10³ LOW HIGH LOW 10⁶ 10⁰ HIGH LOW LOW 10⁰ HIGH LOW HIGH 10⁰ 10¹¹¹ HIGH LOW HIGH 10⁰ 10¹¹¹ HIGH HIGH LOW	0		
	Gain settling time	<150 ms			
	AC/DC setting	Coupling Pin 13 AC LOW DC HIGH			
Scope of Delivery	OE-200-UV, internally thre datasheet, transport packa	aded coupler ring (FST version only), LEMO® 3-pin connector, ge			
OPHISTICATED	TOOLS FOR SIGN	AL RECOVERY F E X T			

Page 6 of 8 0E-200-UV_R22/TH,JMa/10APR2024




OE-200-UV_R22/TH,JMa/10APR2024 Page 7 of 8

Variable Gain Low Noise Current Amplifier

Dimensions (continued)

OE-200-UV-FC (FC fiber optic input)

all dimensions in mm unless otherwise noted

Specifications are subject to change without notice. Information provided herein is believed to be accurate and reliable. However, no responsibility is assumed by FEMTO Messtechnik GmbH for its use, nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of FEMTO Messtechnik GmbH. Product names mentioned may also be trademarks used here for identification purposes only.

© by FEMTO Messtechnik GmbH · Printed in Germany

SOPHISTICATED TOOLS FOR SIGNAL RECOVERY

F E T O