Lock-In-Amplifier Module

Features	- Working Frequency 10 Hz ... $\mathbf{4 5} \mathrm{kHz}$ - Digital Phase Shifter 0 ... 360° - Current and Voltage Input - Parameter Control by local Switches and opto-isolated digital Inputs - Compact and EMI-Shielded Case
Applications	- Spectroscopy - Luminescence, Fluorescence, Phosphorescence Measurements - Light Scattering Measurements - Opto-electronical Quality Control - Integration in Industrial and Scientific Measurement-Systems
Block Diagram	

Lock-In-Amplifier Module

Sparing

Voltage Input

Current Input

Signal Filter

Demodulator

Reference Input

Phase Shifter

Time Constants

Output

Test Conditions
Voltage Input Characteristic
Voltage Input Range
Voltage Input Coupling
Voltage Input Impedance

Voltage Input Noise
Voltage Input CMRR
Voltage Input Gain Drift

Current Input Characteristic
Current Input Range
Current Input Noise
Current Input Source- Capacit.
Current Input Gain Error vs.
Source Capacitance
$V s= \pm 15 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Model "-S": Single-Ended Instrumentation-Amplifier
Model "-D": True Differential Instrumentation-Amplifier $3 \mu \mathrm{~V} . . .100 \mathrm{mV}$ in 1-3-10 steps (for Full Scale Output) AC, 0.015 Hz
Model "-S": 1 M Ω // 4 pF
Model "-D": $2 \mathrm{M} \Omega / / 2 \mathrm{pF}$ differential
$12 \mathrm{nV} / \mathrm{VHz}$
Model "-D": 110 dB @ 1 kHz, 100 dB @ 10 kHz
100 ppm/K

Transimpedance-Amplifier, -1 kV/A (inverting)
$3 \mathrm{nA} \ldots 100 \mu \mathrm{~A}$ in 1-3-10 steps (for Full Scale Output) $13 \mathrm{pA} / \mathrm{VHz}$
$10 \mathrm{pF}-1 \mathrm{nF}$ (recommended)
Cs $\quad \mathrm{f}<20 \mathrm{kHz}$
$10 \mathrm{pF}<1 \%$
$100 \mathrm{pF}<1 \%$
$1 \mathrm{nF} \quad<2 \%$

Signal Filter Lowpass (-3 dB BW) $150 \mathrm{kHz} ; 12 \mathrm{~dB} / 0 \mathrm{ct}$.
Signal Filter Highpass (-3 dB BW) 0.4 Hz; 6 dB/Oct.
Signal Filter Cutoff accuracy $\pm 20 \%$
Demodulator Dynamic Reserve 35 dB @ Low Drift Setting
55 dB @ High Dynamic Setting
$\pm 100 \mathrm{mV} . . . \pm 5 \mathrm{~V} @$ bip. Mode (0 V Comparator Threshold) - 5 V / +10 V @ TLL Mode (2 V Comparator Threshold) $1 \mathrm{M} \Omega$
max. 2 s @ Fast Setting
max. 4 s @ Slow Setting

Digital, Working Frequency 10 Hz ... 45 kHz
$0 \ldots+360^{\circ}$
1.4°
< 100 ppm/K
$<0.3^{\circ}$
$3 \mathrm{~ms} . . .10 \mathrm{~s}$ in 1-3-10 steps
$6 \mathrm{~dB} / 0 \mathrm{ct}$. or $12 \mathrm{~dB} / 0 \mathrm{ct}$. switchable
$X=\operatorname{In}$ Phase
$\pm 10 \mathrm{~V}$ (@ $2 \mathrm{k} \Omega$ Load)
$\pm 5 \mathrm{~mA}$ max.
50Ω
50 ppm/K @ Low Drift Setting
500 ppm/K @ High Dynamic Setting
2 \%, Frequency > $30 \mathrm{kHz} 5 \%$ @ sinusoidal input signal $\pm 100 \%$ Full Scale by ± 10 V Control @ Low Drift Setting
$\pm 100 \%$ Full Scale by ± 1 V Control @ High Dyn. Setting
Output Voltage Offset Control-
Voltage Impedance $22 \mathrm{k} \Omega$

Lock-In-Amplifier Module

Specifications (continued)		
Status Indicator LED	Functions	Amplifier Overload Status Reference PLL Unlocked Status
Digital Control	Control Input Voltage Control Input Current Digital Status Output Voltage Digital Status Output Current	Low: - $0.8 \mathrm{~V} \ldots+0.8 \mathrm{~V}$ High: + $1.8 \mathrm{~V} \ldots+12 \mathrm{~V}$, TTL / CMOS compatible $0 \mathrm{~mA} @ 0 \mathrm{~V}, 1.5 \mathrm{~mA} @+5 \mathrm{~V}, 4.5 \mathrm{~mA} @+12 \mathrm{~V}$ typ. Active: +4.5 V typ. Non Active: 0 V typ. 10 mA max.
Power Supply	Supply Voltage Supply Current	$\begin{aligned} & \pm 15 \mathrm{Vdc} \ldots \pm 20 \mathrm{Vdc} \\ & -60 \mathrm{~mA},+100 \mathrm{~mA} \end{aligned}$
Case	Weight Material	370 gr. (0.86 lbs) AIMg4.5Mn, nickel-plated
Temperature Range	Storage Temperature Operating Temperature	$\begin{aligned} & -40 \ldots+100^{\circ} \mathrm{C} \\ & 0 \ldots+60^{\circ} \mathrm{C} \end{aligned}$
Absolute Maximum Ratings	Signal Input AC Voltage Signal Input DC Voltage Reference Input Voltage Control Input Voltage Power Supply Voltage	$\begin{aligned} & 20 \mathrm{Vpp} \\ & \pm 30 \mathrm{~V} \\ & \pm 30 \mathrm{~V} \\ & -5 \mathrm{~V},+30 \mathrm{~V} \\ & \pm 22 \mathrm{~V} \end{aligned}$

Lock-In-Amplifier Module

Phase Shift Setting
Phase shift is adjusted by 2 phase switches with 8 Bit resolution. Values 0 ... 255 (Hex 00 ... FF) correspond to phase shift setting $0 \ldots+360^{\circ}$.
One step with switch marked "Coarse" changes phase shift by 22.5°. The "Fine"-switch changes phase shift by 1.4° - steps:

Lock-In-Amplifier Module

Reference Input

Output
Power Supply

Control Port

BNC

BNC

LEMO Series 1S, 3-pin fixed Socket
Pin 1: + 15V
Pin 2: - 15 V
in 3: GND

Sub-D 25-pin, female, Qual. Class 2
Pin 1: $\quad+12 V$ (Stabilized Power Supply Output)
Pin 2: \quad-12V (Stabilized Power Supply Output)
Pin 3: \quad AGND (Analog Ground)
Pin 4: $\quad+5 \mathrm{~V}$ (Stabilized Power Supply Output)
Pin 5: \quad X-Output
Pin 6: \quad Overload Status Output
Pin 7: Unlocked Status Output
Pin 8: \quad X-Output Offset Control Input
Pin 9: \quad DGND (Ground f. Digital Control Pin 10-25)
Pin 10: \quad Dynamic Mode (DYNO)
Pin 11: Sensitivity (SENO)
Pin 12: \quad Sensitivity (SEN1)
Pin 13: \quad Sensitivity (SEN2)
Pin 14: Time Constant Slope (TCSL)
Pin 15: \quad Time Constant (TCO)
Pin 16: \quad Time Constant (TC1)
Pin 17: \quad Time Constant (TC2)
Pin 18: \quad Phase Shift (PHO)
Pin 19: \quad Phase Shift (PH1)
Pin 20: \quad Phase Shift (PH2)
Pin 21: Phase Shift (PH3)
Pin 22: \quad Phase Shift (PH4)
Pin 23: \quad Phase Shift (PH5)
Pin 24: \quad Phase Shift (PH6)
Pin 25: \quad Phase Shift (PH7)

Lock-In-Amplifier Module

Remote Control Operation	General	Remote control input bits are opto-isolated and connected by logical OR to local switch setting. The 4 hexadecimal switches are 4 bit-coded as shown in the following table:				
		Switch Code	MSB Bit 3		Bit 1	$\begin{aligned} & \text { LSB } \\ & \text { Bit } 0 \end{aligned}$
		0	Low	Low	Low	Low
		1	Low	Low	Low	High
		2	Low	Low	High	Low
		3	Low	Low	High	High
		4	Low	High	Low	Low
		5	Low	High	Low	High
		6	Low	High	High	Low
		7	Low	High	High	High
		8	High	Low	Low	Low
		9	High	Low	Low	High
		A	High	Low	High	Low
		B	High	Low	High	High
		C	High	High	Low	Low
		D	High	High	Low	High
		E	High	High	High	Low
			High	High	High	High
		For remote control a Lock-In-Amplifier switch setting, set the local switch to " 0 " and select the wanted setting via a 4-bit-code at the corresponding digital inputs:				
	Sensitivity Switch Corresponding Inputs	Bit Corresponding Control Port Input				
		Bit 0 SENO (Pin 11)				
		Bit 1 SE 1	SEN1 (Pin 12)			
		Bit 2 SE	SEN2 (Pin 13)			
		Bit 3 DY	DYNO (Pin 10)			
	Time Constant Switch Corresponding Inputs	Bit Corresponding Control Port Input				
		Bit 0 TCO	TC0 (Pin 15)			
		Bit 1 TC	TC1 (Pin 16)			
		Bit 2 TC	TC2 (Pin 17)			
		Bit 3 TCS	TCSL (Pin 14)			
	Phase Switch Coarse Corresponding Inputs	Bit Cor	Corresponding Control Port Input			
		Bit 0 PH	PH4 (Pin 22)			
		Bit 1 PH5	PH5 (Pin 23)			
		Bit 2 PH	PH6 (Pin 24)			
		Bit $3 \quad \mathrm{PH}$	PH7 (Pin 25)			
	Phase Switch Fine Corresponding Inputs	Bit	Corresponding Control Port Input			
		Bit 0 PH	PH0 (Pin 18)			
		Bit 1 PH	PH1 (Pin 19)			
		Bit 2 PH	PH2 (Pin 20)			
		Bit 3 PH	PH3 (Pin 21)			
		For example to select a switch setting code " 6 ", you have to connect a "High"- level signal to the corresponding control input pins Bit 1 \& Bit 2. Mixed operation, e.g.local phase setting and remote controlled sensitivity setting, is also possible.				
SOPHISTICATED	S FOR SIGNAL RECOVERY			-	三	17

Lock-In-Amplifier Module

Model No.: LIA-MV-150-S

- Singe-Ended Input (BNC-Connector Input)

Model No.: LIA-MV-150-D

- True Differential Input (LEMO-Connector Input)

FEMTO Messtechnik GmbH

[^0]

Datasheet		LUCI-10
USB to D-Sub Control Interface for FEMTO Amplifiers		
Software Specifications		
Software (included on CD)	Device driver	dynamic link library (DLL) for integration in Microsoft Windows ${ }^{\circledR} 32$ bit \& 64 bit operating system for use with C/C++, LabWindows ${ }^{\text {TM }} /$ CVI $^{\text {TM }}$ or LabVIEW ${ }^{\text {TM }}$
	Application software	GUI (graphical user interface) programs for simple remote control of FEMTO amplifiers and photoreceivers provided as executable programs and LabVIEW projects
	LabVIEW programs	sample programs to control and test the LUCl-10 hardware (including front panel and block diagram)
	LabVIEW library	special VI toolkit for integration in LabVIEW 32 bit \& 64 bit development environment
	Note: A National Instruments LabVIEW ${ }^{\text {TM }}$ license is not included in this software package. For use of the GUI application programs the LabVIEW Run-Time Engine is required. If not detected on the host PC during the installation process the LabVIEW Run-Time Engine will be installed automatically from the CD.	
System Requirements	Operating system Processor System memory Hard disk space Interface port Supported FEMTO modules	Microsoft Windows XP with Service Pack 3, or higher Intel Pentium III or AMD Athlon, or better 1 GB of RAM, or more about 5 GB USB 1.1 or USB 2.0 any standard FEMTO amplifier or photoreceiver with 25 pin D-Sub socket, except model HLVA-100
Optional Requirements	For development of own app LabVIEW Version 2012 (or	on programs an additional development environment like or $\mathrm{C} / \mathrm{C}++$ is required.
Legal Notice	LabVIEW, CVI, National Inst FEMTO Messtechnik GmbH FEMTO Messtechnik GmbH Instruments. The mark LabWindows is us Microsoft and Windows are Corporation in the United Sta FEMTO and the FEMTO logo GmbH in Germany, the U.S. Product and company name respective companies used	ts and Nl are trademarks of National Instruments. Neither any software programs or other goods or services offered by affiliated with, endorsed by, or sponsored by National nder a license from Microsoft Corporation. registered trademarks or trademarks of Microsoft and/or other countries. rademarks or registered trademarks of FEMTO Messtechnik or other countries. tioned may also be trademarks or trade names of their for identification purposes only.

Specifications are subject to change without notice. Information provided herein is believed to be accurate and reliable. However, no responsibility is assumed by FEMTO Messtechnik GmbH for its use, nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of FEMTO Messtechnik GmbH. Product names mentioned may also be trademarks used here for identification purposes only.
© by FEMTO Messtechnik GmbH • Printed in Germany

[^0]: Specifications are subject to change without notice. Information furnished herin is believed to be accurate and reliable. However, no responsibility is assumed by FEMTO Messtechnik GmbH for its use, nor for any infringement of patents or other rights granted by implication or otherwise under any patent rights of FEMTO Messtechnik GmbH. Product names mentioned may also be trademarks used here for identification purposes only. © by FEMTO Messtechnik GmbH
 Printed in Germany

