

Electro Optical Components, Inc.

5464 Skylane Boulevard, Suite D, Santa Rosa, CA 95403 Toll Free: 855-EOC-6300

www.eoc-inc.com | info@eoc-inc.com

Mid-Infrared **Light Emitting Diode**

μm

	Parameters	Units	Conditions	Ratings			
				Min	Тур	Max	
	Peak emission wavelength	μm	T=300 K, I = 150 mA qCW	2,30	2,35	2,39	
	FWHM of the emission band	nm	I = 150 mA qCW	170	220	270	
	Quasi-CW Optical Power	mW	I = 200 mA qCW	0,6	0,8	1,0	
	Pulsed Peak Optical Power	mW	I=1 A, f=1 kHz, duty cycle 0.1%	12	15	20	
	Voltage	V	T=300 K, I=200 mA	0,5	-	2,5	
	Switching time	ns	T=300 K	10	20	30	
	Operating temperature range	°C	-200+	-200+50			
	Soldering temperature	°C	180				

Light Emitting Diodes Lms23LED series are fabricated from narrow band-gap GalnAsSb/AlGaAsSb heterostructures lattice matched to GaSb substrate.

Spectra at different currents (qCW, T=300 K)

Spectra at different temperatures (qCW, I=150 mA)

LED Power Characteristic (quasi-CW mode, T=300K)

LED Typical Current-Voltage Characteristics (T=300K)

Mid-Infrared Light Emitting Diode

Packages	Model	
TO-18 with a cap without a window	Lms MIR LED	
TO-18 with a parabolic reflector without a window	Lms MIR LED-R	
TO-18 with a parabolic reflector with a glass window	Lms MIR LED-RW	
TO-5 with a built-in thermocooler and thermoresistor, covered by a cap with a glass window	Lms MIR LED-TEM	
TO-5 with a built-in thermocooler and thermoresistor, covered by a parabolic reflector with a glass window	Lms MIR LED-TEM-R	

Beam Divergence (Far-field pattern)

Technical Drawing

To drive the LED we recommend to use:

• LED basic circuit connection

 LED drivers and evaluation boards designed by LED Microsensor NT

We recommend to use Quasi Continuous Wave (qCW) mode with duty cycle 50% or 25% to obtain maximum average optical power and short Pulse modes to obtain maximum peak power. Hard CW (continuous wave) mode is NOT recommended.

IMPORTANT CAUTIONS:

- Please check your connection circuit before turning on the LED
- Please observe the LED polarity: LED anode is marked with a RED dot $\,$
- Please do not connect the LED to the multimeter